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Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation
on a Pt„110… surface under global delayed feedback

Matthias Bertram and Alexander S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

~Received 11 December 2002; published 25 March 2003!

Effects of global delayed feedback on diffusion-induced turbulence are studied in a realistic model of
catalytic oxidation of carbon monoxide on Pt~110!. Spatiotemporal patterns resulting from numerical simula-
tions of this model are identified and analyzed using a transformation into the phase and the amplitude of local
oscillations. We find that chemical turbulence can be efficiently controlled by varying the feedback intensity
and the delay time in the feedback loop. Near the transition from turbulence to uniform oscillations, various
chaotic and regular spatiotemporal patterns—intermittent turbulence, two-phase clusters, cells of hexagonal
symmetry, and phase turbulence—are found.
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I. INTRODUCTION

Self-organized pattern formation is a common feature
spatially extended nonlinear systems far from thermo
namic equilibrium@1#. In recent years, considerable progre
was made in engineering pattern formation and controll
spatiotemporal chaos in such high-dimensional syste
@2–6#. To achieve these goals, global control strategies
practical because in many distributed systems, where l
access to all the individual elements is difficult, a single p
rameter that affects the dynamics of the entire medium
be easily manipulated.

By means of time-periodic external forcing, various p
terns have been induced in oscillatory systems@7–9#. Wave
propagation in excitable media can be controlled by the sa
method@10,11#. For practical applications, feedback metho
are advantageous because an acting force is generated b
system itself, and thus the control signal automatically
justs to variations of experimental conditions. Most feedba
schemes designed for application to spatially extended
tems aim to suppress spatiotemporal instabilities@12–14#,
but global feedbacks can also be employed as a tool to
duce new spatiotemporal patterns@15#. Global feedbacks for
controlling pattern formation under nonchaotic conditio
were mainly applied to chemical systems@4,16–21#, whereas
the effects of such feedbacks on chaotic extended sys
were also probed in systems of various other origins@3,22–
25#. However, suppression of chemical turbulence was
perimentally only recently achieved in the catalytic oxidati
of carbon monoxide on a platinum~110! single crystal sur-
face @5,26#.

The experiments described in Refs.@5,26# employed a
scheme of global delayed feedback that was proposed p
ously by theoretical investigations of a general mo
@15,27#. The feedback was implemented by making the C
partial pressure in the reaction chamber dependent on
time properties of the evolving patterns. It was demonstra
that chemical turbulence can be controlled and replaced
various types of chaotic and regular spatiotemporal patte

In this paper, we study the effects of global delayed fe
back on diffusion-induced turbulence in a realistic model
1063-651X/2003/67~3!/036207~11!/$20.00 67 0362
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catalytic CO oxidation on Pt~110!. The model approximately
describes the experiments presented in Refs.@5,26#. The
model reproduces experimentally observed phenomena
provides their theoretical interpretation.

The paper is organized as follows. The considered re
tion, the model, and the feedback method are introduce
Sec. II. In Sec. III, the results of numerical simulations a
presented. We show synchronization diagrams displaying
regions in parameter space where different types of s
tiotemporal patterns exist. Those patterns are then analy
by making use of a transformation to phase and amplit
variables that was introduced in Ref.@19# and is reviewed in
the Appendix. The paper ends with a discussion of the
tained results in Sec. IV.

II. FORMULATION OF THE PROBLEM

Among oscillatory surface reactions, the catalytic CO o
dation on Pt~110! is the most thoroughly studied examp
@28#. Due to a high energy barrier in the gas phase, m
ecules of CO and oxygen have to adsorb on the catal
surface before the reaction to carbon dioxide can take p
~the adsorption of oxygen is dissociative!. Produced CO2 im-
mediately desorbs into the gas phase leaving again free
for adsorption of the reactants. The system is maintained
from thermodynamic equilibrium by a constant supply
fresh reactants and removal of the product.

The clean Pt~110! top surface layer reconstructs into a
32 ‘‘missing row’’ structure. This reconstruction can be r
versibly lifted by adsorption of CO molecules@29#. Because
oxygen adsorption is favored on the nonreconstructed 131
phase, periodic switching between two states of differ
catalytic activity can occur, resulting in temporal oscillatio
of the reaction rate.

Local spatial coupling across the catalytic surface is p
vided by surface diffusion of adsorbed CO molecules. B
cause the reaction consumes reactants from the gas p
and the resulting local variations of CO pressure in the
phase quickly extend to the whole system, intrinsic glo
gas-phase coupling is always additionally present.

In the experiments described in Refs.@5,26#, the effects of
internal gas-phase coupling were minimized by using pref
©2003 The American Physical Society07-1
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ricated crystals with only small catalytically active area
Pattern formation was monitored by means of photoemiss
electron microscopy~PEEM! @30#. The experimental param
eters were chosen such that the reaction was oscillatory
furthermore, uniform oscillations were unstable and a co
plex state of spiral-wave turbulence spontaneously de
oped. Global delayed feedback was artificially introduced
making the dosing rate of CO molecules dependent on
integral PEEM intensity in the observation window.

Mathematical modeling of the experiments is conduc
using a realistic model of catalytic CO oxidation on Pt~110!
@31,32#. The model takes into account adsorption of CO a
oxygen molecules, reaction, desorption of CO molecules,
structural phase transition of the Pt~110! surface, and surface
diffusion of adsorbed CO molecules. For simplicity, surfa
roughening, faceting, formation of subsurface oxygen, a
the effects of internal gas-phase coupling are not taken
account. The equations are

u̇5k1s COpCO~12u3!2k2u2k3uv1D¹2u, ~1!

v̇5k4pO2
@sO,131w1sO,132~12w!#~12u2v !22k3uv,

~2!

ẇ5k5S 1

11expS u02u

du D 2wD . ~3!

The variablesu andv represent the surface coverage of C
and oxygen, respectively. The variablew denotes the loca
fraction of the surface area found in the nonreconstructe
31 structure. All three variables can vary in the interv
from 0 to 1. For explanation and values of the parameters
Table I.

A variant of model~1!–~3! has first been studied in th
absence of diffusion by Krischeret al. @31# and, after inclu-
sion of diffusive coupling, by Ba¨r et al. @33,34#. Depending
on the values of its parameters, the model exhib

TABLE I. Parameters of the model.

k1 3.143105 s21 mbar21 Impingement rate of CO
k2 10.21 s21 CO desorption rate
k3 283.8 s21 Reaction rate
k4 5.8603105 s21 mbar21 Impingement rate of O2
k5 1.610 s21 Phase transition rate
s CO 1.0 CO sticking coefficient
s O,131 0.6 Oxygen sticking coefficien

on the 131 phase
s O,132 0.4 Oxygen sticking coefficien

on the 132 phase
u0 , du 0.35, 0.05 Parameters for the

structural phase transition
D 40 mm2 s21 CO diffusion coefficient
p O2

13.031025 mbar O2 partial pressure
p0 4.8131025 mbar Base CO partial pressure
uref 0.3358 Reference CO coverage
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monostable, bistable, excitable, and oscillatory behavi
The properties of stable rotating spiral waves and th
breakup leading to turbulence were studied in quite detai
the excitable regime@34,35#. The existence of another form
of chemical turbulence under oscillatory conditions was a
subsequently shown@36#. Furthermore, the effects of interna
gas-phase coupling and the influence of an additional v
able accounting for the formation of subsurface oxygen h
been investigated by Falcke and Engel@36–38# and by von
Oertzenet al. @32# in different variants of the model.

To model the global delayed feedback applied in the
periments described in Refs.@5,26#, we assume in this pape
that the CO partial pressurepCO in Eq. ~1! is not constant but
varies according to the equation

p CO~ t !5p02m@ ū~ t2t!2uref#, ~4!

where ū(t)51/S*Su(x,t)dx denotes the spatial average
the CO coverage at timet. The parameterm specifies the
feedback intensity,t is the effective time delay, andp0 is the
base value of partial CO pressure. The reference valueuref is
chosen as the CO coverage in the unstable steady state i
absence of feedback. The global feedback specified by
~4! is designed in such a way that at vanishing delay, the
partial pressure is instantaneously decreased when the
gral CO coverage increases. The parametert allows to
change the phase relation between an oscillating CO co
age and corresponding variations of the feedback sig
Note that in the experiments@5,26# the PEEM intensity,
which is a nonlinear function of both the CO and oxyg
coverages, was actually used to compute the control sig
However, the form of this function is not exactly know
@30#. Thus, the description in Eq.~4! is a simplification of the
experimental setup.

The effects of global delayed feedback on pattern form
tion in model~1!–~4! were previously investigated with pa
rameter values chosen such that, in the absence of feedb
uniform oscillations were stable@19#. In contrast, in the
present study the parameter values of the partial press
are chosen such that uniform oscillations are unstable w
respect to small perturbations and chemical turbulence sp
taneously develops in the unperturbed system. As we s
see later, this leads to significant differences in the resul
phenomena when global feedback is applied.

Numerical simulations of the model were performed u
ing a second-order finite difference scheme for the spa
discretization with a grid resolution ofDx54 mm or
smaller. For the temporal discretization an explicit Eu
scheme with a fixed time stepDt50.001 s is used. Long
integration times of at least 3000s ensure that transients h
decayed at the end of simulations. Unless stated otherw
the system size is 0.8 mm for one-dimensional and
30.4 mm2 for two-dimensional media, and periodic~no-
flux! boundary conditions are imposed on one-dimensio
~two-dimensional! systems. While for the two-dimensiona
system only selected frames of patterns are presented in
paper; short videos illustrating the evolution of differe
simulated two-dimensional patterns are available via Inter
@39#.
7-2
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PATTERN FORMATION ON THE EDGE OF CHAOS: . . . PHYSICAL REVIEW E 67, 036207 ~2003!
Spatiotemporal patterns resulting from numerical simu
tions of the model are identified and analyzed using a tra
formation of the model variables into the instantaneo
phase and amplitude of local oscillations. To do this,
employ a method that was described in detail in Ref.@19#
and is reviewed in the Appendix. Using this method, phasf
and amplitudeR are defined in the projection plane of th
two model variablesu and w. A reference orbit for the dy-
namics defined in this plane is introduced to approximat
compensate for deviations from harmonicity in the oscil
tions. A similar technique has been used also for the anal
of experimental patterns@26#. The transformation to phas
and amplitude variables allows to directly compare the pr
erties of patterns in systems of different origins. Moreove
provides a link to general studies of pattern formation
oscillatory reaction-diffusion systems performed in t
framework of the complex Ginzburg-Landau equati
~CGLE! @40,41#.

III. RESULTS

A. Amplitude turbulence

At first, the behavior found in model~1!–~4! in the ab-
sence of feedback (m50) is considered. At the paramete
specified in Table I, an isolated system element perfo
nonharmonic limit cycle oscillations of periodT052.73 s.
However, due to destabilizing effect of the diffusive coupli
between neighbored elements, uniform oscillations are
stable with respect to small perturbations and chemical
bulence spontaneously develops.

For a one-dimensional system, a space-time diag
showing the evolution of the variableu during transition
from uniform oscillations to turbulence is displayed in Fi
1~a!. The initially small perturbations of the uniform sta
grow rapidly, thereby destroying spatial correlations betwe
distant system elements. In the fully developed turbul
state, the spatially averaged values of all model variables
almost constant and show only small random fluctuation

To further characterize the observed turbulent state,
transformation to phase and amplitude variables@19# is em-
ployed. Space-time diagrams of the phase and amplit
fields during the transition to turbulence are shown in Fi
1~b! and 1~c!, respectively. Here and in all further show
gray-scale images of the amplitude field, black color cor
sponds toR50 and white color to the maximum value ofR
in the plotted distribution, unless stated otherwise. Exam
ing Fig. 1~c!, one finds that in the state of developed turb
lence, multiple defects are present in the medium. Such
jects are characterized by a significantly decrea
oscillation amplitude. This state is reminiscent ofamplitude
turbulence @42# ~or defect chaos@41#! in the complex
Ginzburg-Landau equation.

At the same parameter values, uniform oscillations
also unstable in two-dimensional systems. Snapshots o
resulting spatial distributions of CO coverage, phase,
amplitude are displayed in Figs. 1~d!, 1~e!, and 1~f!, respec-
tively. The two-dimensional spatiotemporally chaotic state
characterized by the presence of extended regions of
creased oscillation amplitude~strings!. Perpendicular to such
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objects, the oscillation phase strongly varies in space.
two ends of a string usually correspond to topological defe
in the phase field. Fragments of spiral waves are only ra
visible in such a state of developed amplitude turbulen
The shown behavior represents a typical example of the
bulent state found in a wide range of model parameters.

B. Overview of feedback effects

In the following study, we keep all parameters consta
except the feedback intensitym and the delayt, which are
systematically varied. When global delayed feedback
present, it significantly affects the spatiotemporal se
organization of the system. The synchronization diagra
displayed in Fig. 2 summarize the results of multiple sim
lations of the one-dimensional system at different values
m and t. To uncover effects of hysteresis, the simulatio
underlying Fig. 2~a! started from the developed turbule
state, whereas Fig. 2~b! is based on simulations taking a un
form state with small superposed random perturbations
initial condition. Different types of stable regimes repr
sented by different shading are reached after transients. N
that the two diagrams differ in the displayed range of fee
back parameters.

FIG. 1. Amplitude turbulence in model~1!–~4! in the absence of
feedback (m50). In frames~a!, ~b!, and ~c!, space-time diagrams
of CO coverageu, phasef, and oscillation amplitudeR, respec-
tively, are shown for a one-dimensional system. The shown t
interval is 150 s. Frames~d!, ~e!, and~f! display snapshots ofu, f,
and R, respectively, for a two-dimensional system. Darker regio
in the images correspond to lower values of the displayed variab
7-3
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 67, 036207 ~2003!
FIG. 2. Synchronization diagrams for the one-dimensional system in the presence of global delayed feedback, showing the ap
boundaries of different dynamical regimes reached after transients. The diagrams are based on numerical simulations that start~a!
developed turbulence and~b! a slightly perturbed uniform state as initial conditions. For comparison, the synchronization border in fra~a!
is additionally shown in frame~b! as a dashed line. The delay time is measured in multiples of the oscillation period of the system
absence of diffusion and feedback,T052.73 s. The feedback intensity is normalized to the base CO partial pressurep054.81
31025 mbar. The shown boundaries have been determined from simulations with a density of sample points ofDm/p050.01 and
Dt/T050.01 in the vicinity of the transition regions for frame~a! and with a density ofDm/p050.005 andDt/T050.01 for frame~b!.
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Figure 2~a! shows that, if the feedback intensity is suf
ciently large, global delayed feedback allows to suppress
plitude turbulence and induces uniform oscillations in a w
range of delays~light gray-shaded regions!. The minimal
value ofm needed to stabilize uniform oscillations, i.e., t
efficiency of the feedback, strongly depends on the choic
t. When the feedback intensity is fixed at an intermedi
level, several synchronization windows alternate with turb
lent zones upon variation of the delay. Note that in cert
small intervals of the delay~e.g., in the approximate rang
0.03,t/T0,0.10), turbulence can be suppressed at re
tively low values of the feedback intensity, but the feedba
fails to stabilize uniform oscillations at higher values ofm.
At very small delays,t/T0,0.03, the suppression of turbu
lence is impossible for realistic values ofm. The latter ob-
servation, however, is due to the specific implementation
global delayed feedback according to Eq.~4!. Additional nu-
merical simulations show that suppression of turbulence
also possible at arbitrarily small values oft if, for instance,
the generated control signal acts on the oxygen partial p
surep O2

instead of on the CO partial pressure.
Even if global delayed feedback is too weak to co

pletely suppress turbulence, it still can alter the propertie
the turbulent state. An interesting dynamical regime is
served close to the synchronization border@the boundary be-
tween the white and the gray-shaded regions in Fig. 2~a!#.
Here, a large part of the system is sometimes already in
state of uniform oscillations, but a few localized amplitu
defects persist. Individual defects either die out in the furt
evolution of the system, or they initiate a cascade of de
reproduction. The resulting state is reminiscent ofintermit-
tent turbulence@42# ~or spatiotemporal intermittency@41#! in
the CGLE and is investigated more closely below.

At feedback parameters corresponding to the dark g
regions in Fig. 2, the turbulent state is suppressed via
formation of cluster patterns. Cluster patterns consist o
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large, homogeneously oscillating domains that are separ
by narrow domain interfaces. As is shown later, two differe
types of stable clusters are observed: phase clusters with
tiphase oscillations and amplitude clusters with coexist
limit cycles.

A different synchronization diagram is obtained when
uniform state with small superimposed random perturbati
is taken as initial condition in the simulations, see Fig. 2~b!.
Examining this diagram, it is found that the stability regio
of uniform oscillations extends far beyond the former sy
chronization boundary@dashed line in Fig. 2~b!#. Thus, for a
broad range of delays, the uniform state shows strong h
teresis when the feedback intensity is decreased from la
values. Turbulence spontaneously develops from almost
form initial conditions only at feedback parameters outs
the shaded regions. However, in the intermediate param
range inside the shaded regions but below or to the left of
dashed line, a sufficiently strong local perturbation of t
uniform state is able to initiate a defect cascade, yield
either intermittent or fully developed turbulence. The form
tion of clusters is not noticeably affected by hysteresis
fects.

Further types of patterns exist in the hatched region
Fig. 2~b!. In this region, uniform oscillations are unstabl
and wave patternscharacterized by an intrinsic waveleng
develop from small random perturbations. The parameter
gion where wave patterns develop in the one-dimensio
system approximately coincides with the parameter range
which cellular structuresare found in the two-dimensiona
system. Wave patterns, cellular structures, and their tra
tion to turbulence are also further discussed in the follow
sections.

C. Intermittent turbulence

Intermittent turbulence is characterized by the occurre
of turbulent bursts on a laminar background. In this regim
7-4
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a certain degree of long-range order is retained. An exam
of such behavior is displayed in Fig. 3. The chosen param
values are close to the synchronization border in Fig. 2~a!.
The resulting state is characterized by repeated cascad
amplitude defects on the background of uniform oscillatio
The defects reproduce until nearly the entire system is c
ered with turbulence. Then, they simultaneously annihilate
some parts of the medium. Sometimes only a few defe
survive and initiate another reproduction cascade. In
way, the system behavior alternates between strongly tu
lent states with only short-range spatial correlations a
nearly uniform states with large-scale spatial correlatio
Note that the global oscillations used to generate the fe
back signal in the state of intermittent turbulence are chao

The transition from fully developed to intermittent turb
lence and to uniform oscillations in our model is as follow
When the feedback is introduced, small areas with unifo
oscillations appear. As the feedback intensity is increas
the number of such areas and their average size grow.
critical value ofm, all defects die out after transients and t
oscillations are uniform. This corresponds to the crossing
the synchronization border in Fig. 2~a! from below. In small
systems, the delay-dependent transition point depends o
system size and the critical value ofm is lower for smaller
systems. This dependence saturates for larger systems o
L'1 mm. Intermittent turbulence is also observed as a tr
sient above the synchronization border in Fig. 2~a!; however,
in this case, all defects finally die out. As the feedback
tensity is decreased from large values towards the sync
nization border, the lifetime of defects rapidly increases.

In two space dimensions, intermittent turbulence is ch
acterized by irregular cascades of nearly circular structu
on the background of uniform oscillations. Figure 4 displa
three subsequent snapshots of the spatial distributions o
coverage, phase, and amplitude in such a pattern. Addit
ally, phase portraits are shown in the bottom row of Fig.

FIG. 3. Space-time diagram of intermittent turbulence in a o
dimensional system. The amplitudeR is plotted; dark color denote
low amplitude values. Below the space-time diagram, the co
sponding chaotic temporal variations of the CO partial pressure
shown. The feedback parameters aret/T050.293 and m/p0

50.043.
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obtained by plotting the amplitudes and phases for all pix
of a pattern in polar coordinates. The phase of a point in
phase portrait is represented by the polar angle and the
plitude by the distance to the coordinate origin.

At constant feedback parameters, the pattern evolutio
as follows: at a given instant, individual bubbles and rin
shaped structures are present on an almost uniform b
ground, see Fig. 4~a!. The ring-shaped structures represen
later stage in the evolution of bubbles. They are similar to
strings observed during fully developed turbulence, but th
shape typically is more circular. Inside the localized bubb
and along the border of the ring-shaped objects, the osc
tion amplitude is strongly decreased. The phase va
strongly in space perpendicular to such objects. A disti
structure is then found in the phase portrait shown in
bottom of Fig. 4~a!, where the uniform background corre
sponds to the sharp end of the tail. As time goes on,
localized bubbles grow in size and transform into expand
rings, see Fig. 4~b!. New turbulent bubbles are then creat
inside such structures. During this process, the structur
the phase portrait slowly scatters. When the expanding ri

-

-
re

FIG. 4. Snapshots of CO coverage~top row!, phase~second
row!, amplitude~third row!, and phase portraits~bottom row! for
intermittent turbulence in two space dimensions. The time inter
between the subsequent images shown in each row isDt55.2 s and
approximately corresponds to two periods of the oscillating ba
ground. The system size is 0.630.6 mm2. The parameter values ar
t/T050.293 andm/p050.056. A short video illustrating the evo
lution of bubbles and ring-shaped structures during intermittent
bulence is available via Internet@39#.
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gain direct contact, they merge, such that a few oscillat
periods later, only small laminar regions are left in the s
tem, as displayed in Fig. 4~c!. In this state, extended lin
defects with almost vanishing amplitude separate the rem
ing uniform regions from parts of the medium now cover
by turbulence. Another such evolution cycle is again initia
some time later, after large parts of the turbulent regio
have again spontaneously synchronized and only a few
calized defects have survived.

The pattern evolution along a cross section through
two-dimensional system is shown in Fig. 5. It is charact
ized by irregular reproduction cascades of defects simila
the one-dimensional case. However, the two-dimensio
case is more complicated since localized objects expan
into the cross section may emerge spontaneously in
space-time diagram. Note that the temporal oscillations oR
in the space-time diagram are an artifact of the approxim
transformation to amplitude and phase variables due
strong deviations of the local dynamics from the chosen
erence orbit in phase space.

The observed properties of intermittent turbulence ag
well with the scenario seen in the CGLE with global fee
back. In this equation, remarkably similar cascades of am
tude defects have been observed in one space dimen
@15,43#. In two dimensions, the defects corresponded
bubble-shaped structures@27#. Note that intermittent turbu-
lence has also been observed in the unforced CGLE for
propriate parameter values@41,44#. However, it looks differ-
ent and ring-shaped objects are usually not observed in
case in two space dimensions.

D. Cluster patterns

Inside the cluster regions in Fig. 2, two different types
stable clusters, the so-called phase and amplitude clus
have been observed. Their common feature is the presen
a small number of synchronized domains belonging to on
two different oscillatory states. No intrinsic spatial wav
length is present in such patterns.

FIG. 5. Pattern evolution along a cross section through a t
dimensional pattern representing intermittent turbulence. A sp
time diagram of the amplitude distribution and the variation of C
partial pressure are displayed. The same parameters as in Fig
03620
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For most choices of the feedback parameters inside
cluster regions in Fig. 2, two-phase clusters develop. Star
from amplitude turbulence, consecutive snapshots during
development of such a pattern are displayed in Fig. 6. On
time scale of a few seconds, amplitude turbulence is gra
ally suppressed and synchronized domains with antiph
oscillations develop@Figs. 6~a!–6~c!#. The initial spatial dis-
tribution of such domains is random. During the further ev
lution, individual cluster domains of the same phase me
and smaller domains die out@Fig. 6~c!–6~e!#. A further slow
drift of the phase fronts is then still observed, with a te
dency to minimize the front curvature. Finally, a stable s
tionary distribution is reached@Fig. 6~f!#.

An important property of phase clusters in our model
phase balance, i.e., the total areas occupied by the diffe
phase domains in the asymptotic state are equal. Whe
simulation is started with a different initial size ratio, th
domain interfaces slowly drift until a balanced configurati
is reached. This drift is induced by the change in the fe
back signal that follows a change of the size ratio. In t
state of phase balance, the local oscillations sum up t
global signal with a frequency twice as large as the f
quency of local oscillations, see the curves below the spa
time diagram of one-dimensional phase clusters displaye
Fig. 7. Two-phase clusters with similar properties were a
found in our previous investigations@19# of feedback-
induced pattern formation when uniform oscillations we
stable and turbulence was absent in the unperturbed sys

The space-time diagram in Fig. 7 reveals an interest
difference from the previously observed phase clusters.
amining this diagram, one finds that the local oscillatio
inside the phase domains are characterized by an altern
magnitude of subsequent oscillation maxima~see also the
curves below the space-time diagram!. This phenomenon of
period-two oscillations significantly affects the properties
the narrow phase fronts separating the different doma

-
e-

.

FIG. 6. Development of phase clusters from amplitude tur
lence in two space dimensions. The variableu is displayed at dif-
ferent points in time after global feedback has been switched on~a!
t50 s, ~b! t58.2 s,~c! t516.4 s,~d! t528.6 s,~e! t598.2 s, and
~f! t5294.5 s. The parameter values aret/T050.147 andm/p0

50.083.
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While within the domains, consecutive local oscillatio
maxima show a large difference, this difference continuou
decreases towards the center of a phase front. In the mi
of the front, there is a point where the oscillations are
period-one type and almost coincide with the global osci
tions of the pattern~black line in Fig. 7!. Thus, an oscillation
node is absent inside such stationary fronts. This result c
trasts with the presence of oscillation nodes typical for s
tionary antiphase domains with period-one local oscillatio
@19,45#.

Additionally, a different cluster type exists in the larg
cluster region in Fig. 2~a! ~at t/T0'0.15) at high feedback
intensities,m/p0.0.17. A space-time diagram of such clu
ters, which are due to the coexistence of two limit cycles
shown in Fig. 8. Inside the small domain, oscillations a
simple periodic and have a large amplitude, while the ot
domains of the pattern show period-two oscillations w
much smaller amplitude. The domain interfaces are stat
ary and phase balance is absent in such a pattern. Clu

FIG. 7. Space-time diagram of phase clusters in a o
dimensional system. The variableu is displayed. The curves in th
bottom show the variation of CO coverageu within the different
cluster domains~dashed and dotted lines! and the variation of the

spatial averageū ~solid line!. The same parameters as in Fig. 6.

FIG. 8. Space-time diagram of clusters with coexisting lim
cycles in a one-dimensional system. The variableu is displayed.
The curves show the variations ofu within the small and the large
cluster domains~dashed and dotted lines, respectively! and the

variation of ū ~solid line!. The parameter values aret/T050.088
andm/p050.200.
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with coexisting limit cycles~‘‘amplitude clusters’’! were also
observed in the model of CO oxidation as an effect of glo
delayed feedback on stable uniform oscillations@19# and un-
der intrinsic gas-phase coupling@36,37#.

E. Wave patterns and cellular structures

In the following, patterns found in the hatched region
Fig. 2~b! are described. All such structures are stable w
respect to small perturbations, but transform into intermitt
or developed turbulence when a sufficiently strong local p
turbation is applied.

Close to the upper boundary of this region, oscillato
standing waveswith an intrinsic wavelength are found in on
space dimension, see Fig. 9 for an example. Such patt
consist of periodic modulations of both the spatial distrib
tions of the oscillation phase and the amplitude, see Fig. 9~a!.
A local increase ofR corresponds to a decrease off. The
modulations are stationary, so that all system elements s
periodic oscillations, see the space-time diagram of the
cillation phase shown in Fig. 9~b!. The phase and amplitud
variations are small for feedback parameters close to the
der to uniform oscillations, and continuously grow as t
feedback intensity is decreased at a constant delay. A
given set of feedback parameters, the wavelength of
modulations is a characteristic property of the pattern, i.e
is almost independent of the system size~a weak dependenc
is still observed due to the constrains set by the perio
boundary conditions!. Standing waves arising from a finit
wavelength instability were previously observed in t
model of CO oxidation under intrinsic gas phase coupl
@36,37# and in the CGLE with global feedback@15#.

Upon a decrease of the feedback intensity, standing wa
become unstable when the amplitude and phase modula
have reached a critical size. Neighboring phase minima t
start to oscillate weakly around their mean position, there
forming a pattern ofbreathing waves. A space-time diagram
showing the phase distribution of such a pattern in a rota
coordinate frame is shown in Fig. 10~a!. Whenm is further
decreased and the strength of the breathing reaches the
of the spatial wavelength of the pattern, its regularity brea
down. The resulting state is shown in Fig. 10~b!. Colliding
local phase minima merge and from time to time new su
regions are created. However, the phase and ampli
modulations remain comparatively weak, and the global
cillations are still nearly periodic. Such a behavior is rem
niscent of phase turbulence@41# in the one-dimensiona
CGLE. Defects are only spontaneously created in the sys
when the feedback intensity is further decreased below
hatched region in Fig. 2~b!, where they quickly reproduce to
form amplitude turbulence. The described transition fro
standing waves to breathing waves and to phase turbulen
in accordance with previous observations in the framew
of the CGLE with global feedback@43#.

In roughly the same region of feedback parameters wh
wave patterns and phase turbulence are found in one s
dimension, oscillatory cellular structures develop in tw
dimensional systems. Like wave patterns, such structu
represent small-amplitude modulations of uniform oscil

-
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tions and are replaced by intermittent or amplitude tur
lence upon a sufficiently large local perturbation. Three d
ferent types of cellular structures are encountered. Clos
the border to uniform oscillations, the cell arrays are regu
and show a hexagonal symmetry, see Fig. 11~a!. Such pat-
terns are the result of nonlinear interactions between trip
of modes of wave vectork with the same wave numberuku
5k0 @46#. The observed structures are stationary in spa
but show time-periodic local oscillations.

When the feedback intensity is decreased, stationary
arrays become unstable at a delay-dependent critical valu
m. Individual cells then periodically shrink and expan
thereby forming an array of breathing cells, see Fig. 11~b!. In
the spatial Fourier spectrum of such a pattern, two indep
dent frequencies are present.

As in the one-dimensional system, phase turbulence
velops upon further decrease of the feedback intensity
snapshot of the resulting state, characterized by the mob
of cells, is shown in Fig. 11~c!. Individual cells shrink and
expand aperiodically while they slowly travel through t
medium. Occasionally, some of the cells die out or, follo
ing an expansion, reproduce through cell splitting, see F
12 for such an event. Phase turbulence is replaced by am
tude turbulence when the feedback intensity is further
creased. The formation of oscillatory cellular structures w
also theoretically studied in the general model of the CG
with global feedback@27,46#.

FIG. 9. Standing waves in a one-dimensional system.~a! Phase
and amplitude profiles at a fixed time.~b! Space-time diagram o
the phase and the corresponding variation of the CO partial p
sure. The parameter values aret/T050.110 andm/p050.012.
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IV. DISCUSSION

In this paper, we have shown that amplitude turbulence
a realistic model of CO oxidation on Pt~110! can be sup-
pressed by means of global delayed feedback. Such a f
back can be easily implemented in systems of various orig
and its parameters can be freely varied. Synchronization
grams have been constructed for different initial conditio
showing the regions of existence for different spatiotempo
patterns. It was found that turbulence is suppressed and
form oscillations are stabilized in wide regions of the fee
back parameters, in accordance with experimental findi
@26#. At the edge of chaos, when global delayed feedbac
too weak to induce uniform oscillations but strong enough
significantly affect pattern formation, a broad variety of com
plex patterns was found.

In Fig. 13, we summarize the different observed tw
dimensional structures and their amplitude and phase p
erties. The images in the top, second, and third rows of F
13 display spatial distributions of CO coverage, phase,
amplitude, respectively. Additionally, the bottom row show
a phase portrait of each pattern.

The unperturbed turbulent state@Fig. 13~a!# is character-
ized by strong amplitude and phase fluctuations. This sta
similar to fully developed amplitude turbulence in the u
forced CGLE@41#. The patterns shown in Figs. 13~b!–13~e!
represent typical two-dimensional patterns induced by
feedback.

Intermittent turbulence@Fig. 13~b!# has been observe
close to the synchronization border under increasing fe
back intensity. This regime is characterized by irregular c
cades of bubbles developing into ring-shaped structures
the background of uniform oscillations. The amplitude
strongly decreased inside such localized objects.

Stationary two-phase clusters@Fig. 13~c!# were observed
under further increase of the feedback intensity in narr
intervals of the delay timet. Because the local oscillation
inside the cluster domains exhibit period-two local oscil
tions, oscillations within the different cluster domains at
given point in time differ not only in phase, but also in am
plitude; nonetheless, they correspond to the same limit cy
In addition to phase clusters, amplitude clusters with co
istent limit cycles were also observed but are not shown
Fig. 13.

Hexagonal cell arrays@Fig. 13~d!# arising from a finite
wavelength instability were found in a range of feedba
parameters where standing waves develop in one spac
mension. Secondary instabilities led to breathing cellu
structures~not shown in Fig. 13!, and to phase turbulenc
@Fig. 13~e!#. As seen in the corresponding phase portra
both the phase and the amplitude are modulated in cell
structures, though the amplitude variations are weak.

All principal types of feedback-induced two-dimension
patterns—intermittent turbulence, clusters, and cellu
structures—were also observed in experiments with CO o
dation on Pt~110! under global delayed feedback@5,26#. Dur-
ing intermittent turbulence, not only the formation of bubbl
shaped objects on a uniformly oscillating background w
experimentally observed, but also their predicted reprod

s-
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PATTERN FORMATION ON THE EDGE OF CHAOS: . . . PHYSICAL REVIEW E 67, 036207 ~2003!
tion cascades could be identified. Phase clusters in the
periments also exhibited stationary phase fronts, period-
local oscillations, and phase balance. While disordered
lular structures have been observed, regular arrays of c
were not seen in the experimental system where finetunin
the parameters is difficult and some structural surface def
are always present. Additionally, the experiments exhibite
variant of standing waves characterized by the presenc
alternating dark and bright stripes. It is known that in ord
to reproduce such patterns in simulations employing
model of CO oxidation, a fourth variable describing the fo
mation of subsurface oxygen must be included@32#.

A transformation to phase and amplitude variables sim
to the one we have employed in the present work has
been applied to the experimental data@26#. Our simulations
successfully reproduce the principal amplitude and ph
properties of the corresponding structures seen in the ex
ments. There, the turbulent objects seen during intermit
turbulence also represent extended amplitude defects.
two-phase clusters, a similar ‘‘bridge’’ connecting the tw
different phase states is seen in the phase portraits. Cel
structures in the experiments are also characterized by
tively strong phase variations while the amplitude variatio
are comparatively weak.

The results of our simulations can be further compared
the previous study@19# of model ~1!–~4! conducted at pa-
rameter values for which the unforced system shows st
uniform oscillations~or stable spiral waves in two space d
mensions! instead of chemical turbulence. For this case
different synchronization diagram featuring spatiotempo

FIG. 10. Space-time diagrams of~a! breathing waves and~b!
phase turbulence in a one-dimensional system. The phase dis
tion is displayed in a coordinate frame rotating with the period
the reference orbit. The shown time intervals are~a! 100 s and~b!
200 s. The parameter values oft/T0 andm/p0 are, respectively,~a!
0.110, 0.010, and~b! 0.110, 0.008.
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patterns such as traveling phase flips, asynchronous osc
tions, and several other types of cluster patterns was
tained. Except for clusters, none of the structures prese
in the present study were observed. Bubbles and ring-sha
structures during intermittent turbulence, oscillatory cellu
structures, and phase turbulence are characteristic pat
near a transition to chaos and thus we conclude that the p

u-
f

FIG. 11. Different types of oscillatory cellular structures in tw
space dimensions:~a! stationary cells,~b! breathing cells,~c! phase
turbulence. Displayed are distributions of CO coverage~top row!,
phase~second row!, amplitude~third row!, and the spatial power
spectra of the amplitude distributions~bottom row!. In the images
of u, f, andR, black color corresponds to the minimum and wh
color to the maximum value of displayed variables. The param
values of t/T0 and m/p0 are, respectively,~a! 0.110, 0.019;~b!
0.110, 0.016; and~c! 0.110, 0.012.

FIG. 12. Splitting process of a cell. The cell that undergo
splitting is indicated by an arrow. Snapshots of the phase are
played; only one quarter of the system of size 0.430.4 mm2 is
shown. The time interval between individual frames isDt54.8 s.
The parameters are as in Fig. 11~c!.
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M. BERTRAM AND A. S. MIKHAILOV PHYSICAL REVIEW E 67, 036207 ~2003!
ence of turbulence in the unforced system is essential
their observation.

We finally note that in our numerical study, the mod
parameters have been chosen in such a way that oscilla
were not harmonic and the system was not close to a su
critical Hopf bifurcation. Nonetheless, the observed patte
to a large extent, resemble the structures exhibited by
general model of the complex Ginzburg-Landau equat
with global feedback@15,27# where intermittent turbulence
amplitude clusters, and oscillatory cellular arrays were a
found. Thus, we expect that many of the observed phen
ena can be also found in other reaction-diffusion system
various origins.
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APPENDIX: TRANSFORMATION TO PHASE
AND AMPLITUDE VARIABLES

Theoretical studies of pattern formation in oscillato
reaction-diffusion systems are often performed in the fram
work of the CGLE, which is the amplitude equation of a fie

FIG. 13. ~Color online! Distributions of CO coverage~top row!,
oscillation phase~second row!, amplitude~third row!, and phase
portraits~bottom row! for ~a! unforced turbulence and~b!–~e! sev-
eral typical feedback-induced two-dimensional patterns. In the
ages, yellow~white! color denotes high, and blue~black! color de-
notes low values of the displayed variables. Green and red~light
and dark gray, respectively! areas denote intermediate values. T
phase portraits display amplitude and phase of each pixel of a
tern in polar coordinates. In the phase portraits~b! and~c!, bold dots
have been added to indicate the uniform states. The side leng
the system is 0.4 mm in frames~a!, ~c!–~e! and 0.6 mm in frame
~b!. The values of the feedback parametersm (1025 mbar) andt ~s!
are, respectively:~a! 0, 0; ~b! 0.27, 0.8;~c! 0.40, 0.4;~d! 0.09, 0.3;
and ~e! 0.06, 0.3.
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of diffusively coupled Hopf oscillators. Although this equa
tion is strictly valid only close to the soft onset of oscilla
tions, the results can often be successfully used to inter
experimental or numerical data, even in cases when osc
tions have large amplitude and are nonharmonic. To prov
a link to the general studies performed in the framework
the CGLE, it would thus be convenient to have amplitu
and phase variables also defined for anharmonic oscillati
in such a way that they can be compared to the amplit
and the phase of harmonic oscillations in the normal fo
theory.

The variable transformation suggested in Ref.@19# was
developed to realize this idea. It is an empirical method
transform a pair of model variables into an amplitude an
phase variable after computational modeling. Here, am
tude and phase are defined in the projection plane of the
model variablesu and w. A reference trajectory for the dy
namics defined in this plane is introduced to approximat
compensate for deviations from harmonicity in the oscil
tions.

The transformation is illustrated in Fig. 14. Suppose t
the reference trajectory is the closed orbit. The refere
orbit can, for instance, be chosen as the long-time averag
the projected local trajectories, or, as it was done here
determined by an additional numerical simulation of mod
~1!–~3! in the absence of diffusion (D50), where the con-
trol signal previously generated by the diffusive system w
applied asp CO forcing. Note that for periodic uniform oscil
lations, the reference trajectory exactly corresponds to
projection of the limit cycle.

An amplitudeR and a phasef for any local system state
P with coordinates (u,w) in the projection plane can now b
defined in the following way. First, the radius vector

-

at-

of

FIG. 14. Definition of the amplitudeR5r/r ref and phasef

52pT̃/Tref for nonharmonic oscillations.
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lengthr5OP and the pointQ where this radius~or its ex-
tension! intersects with the reference orbit are determin
The amplitude for the pointP is then defined asR5r/r ref ,
where the lengthr ref5OQ is used as a reference radius. F
definition of the phase, some ‘‘initial’’ pointQ0 is marked on
the orbit and the timeT̃ needed to reach pointQ along the
reference cycle is determined. The phase is then define
f52pT̃/Tref , whereTref is the period of the reference orbi
ys

.
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ce
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Note that according to this definition, the amplitude isR
51 as long as the system stays on the reference orbit. M
over, for the motion corresponding to the reference orbit,
phasef increases at a constant velocity with time a
changes by 2p after each period. When local oscillations a
nearly harmonic and the reference orbit is a circle with po
O in its center, the above definition yields the usual pha
and amplitude variables. For further details on the trans
mation to amplitude and phase variables refer to Ref.@19#.
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