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Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation
on a Pt(110 surface under global delayed feedback
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Effects of global delayed feedback on diffusion-induced turbulence are studied in a realistic model of
catalytic oxidation of carbon monoxide on(Pt0). Spatiotemporal patterns resulting from numerical simula-
tions of this model are identified and analyzed using a transformation into the phase and the amplitude of local
oscillations. We find that chemical turbulence can be efficiently controlled by varying the feedback intensity
and the delay time in the feedback loop. Near the transition from turbulence to uniform oscillations, various
chaotic and regular spatiotemporal patterns—intermittent turbulence, two-phase clusters, cells of hexagonal
symmetry, and phase turbulence—are found.
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[. INTRODUCTION catalytic CO oxidation on P110). The model approximately
describes the experiments presented in REF26]. The

Self-organized pattern formation is a common feature ofnodel reproduces experimentally observed phenomena and
spatially extended nonlinear systems far from thermody{rovides their theoretical interpretation.
namic equilibrium[1]. In recent years, considerable progress The paper is organized as follows. The considered reac-
was made in engineering pattern formation and controllingion, the model, and the feedback method are introduced in
spatiotemporal chaos in such high-dimensional systemsec. Il In Sec. lll, the results_of _numgrical simL_llation_s are
[2—6]. To achieve these goals, global control strategies ar@resented. We show synchronization diagrams displaying the

practical because in many distributed systems, where locdf910NS in parameter space where different types of spa-

access to all the individual elements is difficult, a single pa_'uotemporal patterns exist. Those patterns are then analyzed

rameter that affects the dynamics of the entire medium caHy 'makmg use of a transformaﬂon to pha?'e anq amp!|tude
be easily manipulated. variables that was introduced in Rg£9] and is reviewed in

By means of time-periodic external forcing, various pat-the Appendix. The paper ends with a discussion of the ob-

terns have been induced in oscillatory systdifs9]. Wave tained resuilts in Sec. V.
propagation in excitable media can be controlled by the same
method[10,11]. For practical applications, feedback methods

are advantageous because an acting force is generated by theamong oscillatory surface reactions, the catalytic CO oxi-
system itself, and thus the control signal automatically addation on P{110) is the most thoroughly studied example
justs to variations of experimental conditions. Most feedbacK28]. Due to a high energy barrier in the gas phase, mol-
schemes designed for application to spatially extended syscules of CO and oxygen have to adsorb on the catalytic
tems aim to suppress spatiotemporal instabilifit2—14], surface before the reaction to carbon dioxide can take place
but global feedbacks can also be employed as a tool to prathe adsorption of oxygen is dissociatjv®roduced C@im-
duce new spatiotemporal pattefii$]. Global feedbacks for mediately desorbs into the gas phase leaving again free sites
controlling pattern formation under nonchaotic conditionsfor adsorption of the reactants. The system is maintained far
were mainly applied to chemical systefds16—21, whereas from thermodynamic equilibrium by a constant supply of
the effects of such feedbacks on chaotic extended systenfiesh reactants and removal of the product.
were also probed in systems of various other orig$122— The clean RtL10) top surface layer reconstructs into a 1
25]. However, suppression of chemical turbulence was exx2 “missing row” structure. This reconstruction can be re-
perimentally only recently achieved in the catalytic oxidationversibly lifted by adsorption of CO molecul¢29]. Because
of carbon monoxide on a platinyail0) single crystal sur- oxygen adsorption is favored on the nonreconstructed 1
face[5,26). phase, periodic switching between two states of different

The experiments described in Ref§,26] employed a catalytic activity can occur, resulting in temporal oscillations
scheme of global delayed feedback that was proposed prewf the reaction rate.
ously by theoretical investigations of a general model Local spatial coupling across the catalytic surface is pro-
[15,27. The feedback was implemented by making the COvided by surface diffusion of adsorbed CO molecules. Be-
partial pressure in the reaction chamber dependent on reatause the reaction consumes reactants from the gas phase
time properties of the evolving patterns. It was demonstratednd the resulting local variations of CO pressure in the gas
that chemical turbulence can be controlled and replaced bghase quickly extend to the whole system, intrinsic global
various types of chaotic and regular spatiotemporal patterngas-phase coupling is always additionally present.

In this paper, we study the effects of global delayed feed- In the experiments described in R€f5,26], the effects of
back on diffusion-induced turbulence in a realistic model ofinternal gas-phase coupling were minimized by using prefab-

IIl. FORMULATION OF THE PROBLEM
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TABLE I. Parameters of the model. monostable, bistable, excitable, and oscillatory behaviors.
The properties of stable rotating spiral waves and their
ky 3.14x10° s~! mbar* Impingement rate of CO  preakup leading to turbulence were studied in quite detail in
ko 10.21s* CO desorption rate the excitable regimg34,35. The existence of another form
ks 283.8s? Reaction rate of chemical turbulence under oscillatory conditions was also
K, 5.860<10° s mbar* Impingement rate of © subsequently show[i86]. Furthermore, the effects of internal
ks 1.610 s? Phase transition rate gas-phase coupling and the influence of an additional vari-
Sco 1.0 CO sticking coefficient able accounting for the formation of subsurface oxygen have
S0,1x1 0.6 Oxygen sticking coefficient been investigated by Falcke and Enf@6—38 and by von
on the 1x 1 phase Oertzenet al.[32] in different variants of the model.
So1x2 0.4 Oxygen sticking coefficient To model the global delayed feedback applied in the ex-
' on the 1x 2 phase periments described in Ref$,26], we assume in this paper
Ug, dU 0.35, 0.05 Parameters for the that the CO partial pressupg,o in Eq. (1) is not constant but
structural phase transition ~ Varies according to the equation
D 40 pm?st CO diffusion coefficient _
Po, 13.0< 105 mbar Q partial pressure P colt) =po— p[U(t—7) = Ure, (4)
Po 4.81xX 1075 mbar Base CO partial pressure — ]
Urer 0.3358 Reference CO coverage Whereu(t)=1/Sfsu(x,t)dx denotes the spatial average of

the CO coverage at time The parametej specifies the
feedback intensityr is the effective time delay, anal, is the
ricated crystals with only small catalytically active areas.base value of partial CO pressure. The reference glyés
Pattern formation was monitored by means of photoemissioghosen as the CO coverage in the unstable steady state in the
electron microscopyPEEM) [30]. The experimental param- absence of feedback. The global feedback specified by Eq.
eters were chosen such that the reaction was oscillatory ant) is designed in such a way that at vanishing delay, the CO
furthermore, uniform oscillations were unstable and a compartial pressure is instantaneously decreased when the inte-
plex state of spiral-wave turbulence spontaneously develgral CO coverage increases. The parameteallows to
oped. Global delayed feedback was artificially introduced bychange the phase relation between an oscillating CO cover-
making the dosing rate of CO molecules dependent on thgge and corresponding variations of the feedback signal.
integral PEEM intensity in the observation window. Note that in the experimentg5,26] the PEEM intensity,
Mathematical modeling of the experiments is conductedvhich is a nonlinear function of both the CO and oxygen
using a realistic model of catalytic CO oxidation o{J20)  coverages, was actually used to compute the control signal.
[31,32. The model takes into account adsorption of CO andHowever, the form of this function is not exactly known
oxygen molecules, reaction, desorption of CO molecules, thE30]. Thus, the description in E¢4) is a simplification of the
structural phase transition of the(Pt0) surface, and surface experimental setup.
diffusion of adsorbed CO molecules. For simplicity, surface The effects of global delayed feedback on pattern forma-
roughening, faceting, formation of subsurface oxygen, andion in model(1)—(4) were previously investigated with pa-
the effects of internal gas-phase coupling are not taken inteameter values chosen such that, in the absence of feedback,

account. The equations are uniform oscillations were stablgl9]. In contrast, in the
present study the parameter values of the partial pressures
U=Kk;S coPeo( 1 — u3) — kou—ksuv + D V2, (1)  are chosen such that uniform oscillations are unstable with

respect to small perturbations and chemical turbulence spon-
taneously develops in the unperturbed system. As we shall
see later, this leads to significant differences in the resulting
2) phenomena when global feedback is applied.
Numerical simulations of the model were performed us-
1 . . . -
. ——— (3)  ing a second-order finite difference scheme for the spatial
1+exp< Uo—U) discretization with a grid resolution ofAx=4 um or
éu smaller. For the temporal discretization an explicit Euler
scheme with a fixed time stefpt=0.001 s is used. Long
The variabless andv represent the surface coverage of COintegration times of at least 3000s ensure that transients have
and oxygen, respectively. The variabkedenotes the local decayed at the end of simulations. Unless stated otherwise,
fraction of the surface area found in the nonreconstructed the system size is 0.8 mm for one-dimensional and 0.4
x 1 structure. All three variables can vary in the interval X 0.4 mn? for two-dimensional media, and periodio-
from 0 to 1. For explanation and values of the parameters seftux) boundary conditions are imposed on one-dimensional
Table I. (two-dimensional systems. While for the two-dimensional
A variant of model(1)—(3) has first been studied in the system only selected frames of patterns are presented in this
absence of diffusion by Krischat al. [31] and, after inclu- paper; short videos illustrating the evolution of different
sion of diffusive coupling, by Baet al.[33,34. Depending simulated two-dimensional patterns are available via Internet
on the values of its parameters, the model exhibitd39].

v=K4Po,[So,1x1W+ S0 1x2( 1= W)](L—u—0v)?— k3uv,

W:k5
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Spatiotemporal patterns resulting from numerical simula- (a)
tions of the model are identified and analyzed using a trans-
formation of the model variables into the instantaneous
phase and amplitude of local oscillations. To do this, we
employ a method that was described in detail in R&f]
and is reviewed in the Appendix. Using this method, phase
and amplitudeR are defined in the projection plane of the
two model variables) andw. A reference orbit for the dy- (b)
namics defined in this plane is introduced to approximately
compensate for deviations from harmonicity in the oscilla-
tions. A similar technique has been used also for the analysis
of experimental patterng26]. The transformation to phase
and amplitude variables allows to directly compare the prop-
erties of patterns in systems of different origins. Moreover, it
provides a link to general studies of pattern formation in
oscillatory reaction-diffusion systems performed in the
framework of the complex Ginzburg-Landau equation
(CGLE) [40,41.
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IIl. RESULTS

A. Amplitude turbulence

At first, the behavior found in modégll)—(4) in the ab-
sence of feedbacku(=0) is considered. At the parameters
specified in Table I, an isolated system element performs
nonharmonic limit cycle oscillations of periotl,=2.73 s.
However, due to destabilizing effect of the diffusive coupling
between neighbored elements, uniform oscillations are un- 5 1 Amplitude turbulence in modél)—(4) in the absence of
stable with respect to small perturbations and chemical tUrgaagpack £=0). In frames(a), (b), and(c), space-time diagrams
bulence spontaneously develops. _ _ of CO coveragey, phase¢, and oscillation amplitud®, respec-

For a one-dimensional system, a space-time diagramely, are shown for a one-dimensional system. The shown time
showing the evolution of the variable during transition interval is 150 s. Frame@l), (e), and(f) display snapshots af, &,
from uniform oscillations to turbulence is displayed in Fig. and R, respectively, for a two-dimensional system. Darker regions
1(a). The initially small perturbations of the uniform state in the images correspond to lower values of the displayed variables.
grow rapidly, thereby destroying spatial correlations between

distant system elements. In the fully developed FurbUIeanjects, the oscillation phase strongly varies in space. The
state, the spatially averaged values of all model vanaples are o ends of a string usually correspond to topological defects
aqu_osf, c?t?stan; andtshow t(?]nly Zmall rgn;jorbn :‘Iucttu?tltons{hin the phase field. Fragments of spiral waves are only rarely

0 further characterize the observed turbulent state, Mgqinie in such a state of developed amplitude turbulence.

trlansfgrrgatlon tt(') phads_e and amr;h:hjde \;]arlakﬁm dls em-l't dThe shown behavior represents a typical example of the tur-
ployed. opace-ime diagrams of th€ phase and amplitudgjon state found in a wide range of model parameters.
fields during the transition to turbulence are shown in Figs.

1(b) and Xc), respectively. Here and in all further shown
gray-scale images of the amplitude field, black color corre-
sponds tdR=0 and white color to the maximum value Bf In the following study, we keep all parameters constant,
in the plotted distribution, unless stated otherwise. Examinexcept the feedback intensijy and the delayr, which are
ing Fig. 1(c), one finds that in the state of developed turbu-systematically varied. When global delayed feedback is
lence, multiple defects are present in the medium. Such olpresent, it significantly affects the spatiotemporal self-
jects are characterized by a significantly decreasedrganization of the system. The synchronization diagrams
oscillation amplitude. This state is reminiscentaohplitude  displayed in Fig. 2 summarize the results of multiple simu-
turbulence [42] (or defect chaos[41]) in the complex lations of the one-dimensional system at different values of
Ginzburg-Landau equation. w and 7. To uncover effects of hysteresis, the simulations
At the same parameter values, uniform oscillations arainderlying Fig. 2a) started from the developed turbulent
also unstable in two-dimensional systems. Snapshots of thetate, whereas Fig(l is based on simulations taking a uni-
resulting spatial distributions of CO coverage, phase, anfborm state with small superposed random perturbations as
amplitude are displayed in Figs(d), 1(e), and iIf), respec- initial condition. Different types of stable regimes repre-
tively. The two-dimensional spatiotemporally chaotic state issented by different shading are reached after transients. Note
characterized by the presence of extended regions of déhat the two diagrams differ in the displayed range of feed-
creased oscillation amplitudstrings. Perpendicular to such back parameters.

B. Overview of feedback effects
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FIG. 2. Synchronization diagrams for the one-dimensional system in the presence of global delayed feedback, showing the approximate
boundaries of different dynamical regimes reached after transients. The diagrams are based on numerical simulations that s&rted with
developed turbulence arib) a slightly perturbed uniform state as initial conditions. For comparison, the synchronization border ifidrame
is additionally shown in framéb) as a dashed line. The delay time is measured in multiples of the oscillation period of the system in the
absence of diffusion and feedback,=2.73 s. The feedback intensity is normalized to the base CO partial prepgeré.8l
%X 10"° mbar. The shown boundaries have been determined from simulations with a density of sample pdiptspgt0.01 and
A7/Ty=0.01 in the vicinity of the transition regions for frani@ and with a density ofA u/py=0.005 andA 7/T¢=0.01 for frame(b).

Figure 2a) shows that, if the feedback intensity is suffi- large, homogeneously oscillating domains that are separated
ciently large, global delayed feedback allows to suppress anby narrow domain interfaces. As is shown later, two different
plitude turbulence and induces uniform oscillations in a widetypes of stable clusters are observed: phase clusters with an-
range of delayglight gray-shaded regionsThe minimal tiphase oscillations and amplitude clusters with coexistent
value of u needed to stabilize uniform oscillations, i.e., the limit cycles. S _ _
efficiency of the feedback, strongly depends on the choice of A different synchronization diagram is obtained when a
7. When the feedback intensity is fixed at an intermediaté!niform state with small superimposed random perturbations
level, several synchronization windows alternate with turbuJS taken as initial condition in the simulations, see Fi)2
lent zones upon variation of the delay. Note that in certaifEx@mining this diagram, it is found that the stability region
small intervals of the delaye.g., in the approximate range ©f uniform oscillations extends far beyond the former syn-
0.03< 7/Ty<0.10), turbulence can be suppressed at relachronization boundarjdashed line in Fig. @)]. Thus, for a
tively low values of the feedback intensity, but the feedbackProad range of delays, the uniform state shows strong hys-
fails to stabilize uniform oscillations at higher values,of  teresis when the feedback intensity is decreased from Iarg.e
At very small delayss/T,<0.03, the suppression of turbu- value.s._"rurbulen_c'e spontaneously develops from almost uni-
lence is impossible for realistic values pf The latter ob- form initial con(_jltlons only at f(_aedbaqk parameters outside
servation, however, is due to the specific implementation of€ shaded regions. However, in the intermediate parameter
global delayed feedback according to E4). Additional nu-  ange |ns_|de the sha_d_ed regions but below or to th_e left of the
merical simulations show that suppression of turbulence i§@shed line, a sufficiently strong local perturbation of the
also possible at arbitrarily small values »ff, for instance, uniform state is able to initiate a defect cascade, yielding

the generated control signal acts on the oxygen partial pre§_ither intermittent or fully c_JeveIoped turbulence. The forma-
surep o, instead of on the CO partial pressure. tion of clusters is not noticeably affected by hysteresis ef-
2

. . fects.
Even if global delayed fgedpack Is too weak ia COM- "~ Eyrther types of patterns exist in the hatched region in
pletely suppress turbulence, it still can alter the properties of:i

the turbulent state. An interesting dynamical regime is ob- g. 2b). In this region, uniform oscillations are unstable,
' -sting dy 9 andwave patternsharacterized by an intrinsic wavelength
served close to the synchronization borftee boundary be-

tween the white and the gray-shaded regions in Figl]2 develop from small random perturbations. The parameter re-

Here, a large part of the system is sometimes already in th ion where wave patterns develop in the one-dimensional
state'of uniform oscillations, but a few localized amplitude ystem approximately coincides with the parameter range for

; 7 . . . which cellular structuresare found in the two-dimensional
defects persist. Individual defects either die out in the furtherystem_ Wave patterns, cellular structures, and their transi-

evolution .Of the system, or they Initiate a _casca_lde of _defecﬁon to turbulence are also further discussed in the following
reproduction. The resulting state is reminiscentiraérmit- sections
tent turbulencg42] (or spatiotemporal intermittendy1]) in '
the CGLE and is investigated more closely below.

At feedback parameters corresponding to the dark gray
regions in Fig. 2, the turbulent state is suppressed via the Intermittent turbulence is characterized by the occurrence
formation of cluster patterns Cluster patterns consist of of turbulent bursts on a laminar background. In this regime,

C. Intermittent turbulence

036207-4



PATTERN FORMATION ON THE EDGE OF CHAOS .. PHYSICAL REVIEW E 67, 036207 (2003
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FIG. 3. Space-time diagram of intermittent turbulence in a one-
dimensional system. The amplituéeas plotted; dark color denotes R
low amplitude values. Below the space-time diagram, the corre-
sponding chaotic temporal variations of the CO partial pressure art
shown. The feedback parameters arél,=0.293 and u/pg
=0.043.

a certain degree of long-range order is retained. An exampli
of such behavior is displayed in Fig. 3. The chosen paramete
values are close to the synchronization border in Fig).2
The resulting state is characterized by repeated cascades
amplitude defects on the background of uniform oscillations.
The defects reproduce until nearly the entire system is cov- FIG. 4. Snapshots of CO coverag®p row), phase(second
ered with turbulence. Then, they simultaneously annihilate ifow), amplitude(third row), and phase portraitéottom row for
some parts of the medium. Sometimes only a few defectifitermittent turbulence in two space dimensions. The time interval
survive and initiate another reproduction cascade. In thi§etween the subsequentimages shown in each raw=s5.2 s and
way, the system behavior alternates between strongly turb@Pproximately correspongls to two periods of the oscillating back-
lent states with only short-range spatial correlations an@ound- The system size is 0<®.6 mnf. The parameter values are
nearly uniform states with large-scale spatial correlations” 'o=0-293 andu/po=0.056. A short video illustrating the evo-
Note that the global oscillations used to generate the fee({;—mon of pubblgs and rllng-shaped structures during intermittent tur-
back signal in the state of intermittent turbulence are chaotic: ulence s available via Internf39).
The transition from fully developed to intermittent turbu-
lence and to uniform oscillations in our model is as follows.obtained by plotting the amplitudes and phases for all pixels
When the feedback is introduced, small areas with unifornof a pattern in polar coordinates. The phase of a point in the
oscillations appear. As the feedback intensity is increasedhhase portrait is represented by the polar angle and the am-
the number of such areas and their average size grow. At @litude by the distance to the coordinate origin.
critical value ofu, all defects die out after transients and the At constant feedback parameters, the pattern evolution is
oscillations are uniform. This corresponds to the crossing oés follows: at a given instant, individual bubbles and ring-
the synchronization border in Fig(& from below. In small  shaped structures are present on an almost uniform back-
systems, the delay-dependent transition point depends on tigeound, see Fig. (4). The ring-shaped structures represent a
system size and the critical value pfis lower for smaller later stage in the evolution of bubbles. They are similar to the
systems. This dependence saturates for larger systems of sigigings observed during fully developed turbulence, but their
L~1 mm. Intermittent turbulence is also observed as a transhape typically is more circular. Inside the localized bubbles
sient above the synchronization border in Fige)2however, and along the border of the ring-shaped objects, the oscilla-
in this case, all defects finally die out. As the feedback in-tion amplitude is strongly decreased. The phase varies
tensity is decreased from large values towards the synchrastrongly in space perpendicular to such objects. A distinct
nization border, the lifetime of defects rapidly increases. structure is then found in the phase portrait shown in the
In two space dimensions, intermittent turbulence is charbottom of Fig. 4a), where the uniform background corre-
acterized by irregular cascades of nearly circular structuresponds to the sharp end of the tail. As time goes on, the
on the background of uniform oscillations. Figure 4 displayslocalized bubbles grow in size and transform into expanding
three subsequent snapshots of the spatial distributions of Cings, see Fig. ). New turbulent bubbles are then created
coverage, phase, and amplitude in such a pattern. Additiorinside such structures. During this process, the structure in
ally, phase portraits are shown in the bottom row of Fig. 4the phase portrait slowly scatters. When the expanding rings
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FIG. 5. Pattern evolution along a cross section through a two- .
dimensional pattern representing intermittent turbulence. A space- FlG_' 6. Development Of. phase clustgrs TrO“.“ amplitude t.urbu-
time diagram of the amplitude distribution and the variation of CO ence in FWO space dimensions. The variables d|splay9d at dif-
partial pressure are displayed. The same parameters as in Fig. 4_feren'[ points in time after global feedback has been switchedpn:
t=0s,(b)t=8.2 s,(c)t=16.4 s,(d) t=28.6 s,(e) t=98.2 s, and

L . (f) t=294.5s. The parameter values ar(=0.147 andu/py
gain direct contact, they merge, such that a few oscillation- g gg3.

periods later, only small laminar regions are left in the sys-
tem, as displayed in Fig.(d). In this state, extended line

defects with almost vanishing amplitude separate the remain-I F;)r most ch_cnc;s 02f ihe feﬁdbaclr ptarar'geterls mssutje tj[he
ing uniform regions from parts of the medium now covered'USter regions in Fig. 2, wo-phase clusters develop. starting

by turbulence. Another such evolution cycle is again initiatedfrom amplitude turbulence, consecutive snap_sho'_[s during the
evelopment of such a pattern are displayed in Fig. 6. On the

some time later, after large parts of the turbulent regions.

have again spontaneously synchronized and only a few |gime scale of a few seconds, amplitude turbulence is gradu-

calized defects have survived ally suppressed and synchronized domains with antiphase
The pattern evolution along a cross section through th ;cﬂlgﬂons develo;ﬁFlg_s. Q(a)—6(c)]. The 'T““a' spatial dis-
two-dimensional system is shown in Fig. 5. It is character- ribution of such domains is random. During the further evo-

ized by irregular reproduction cascades of defects similar téu“ém' mﬁlvu(jjual c_Iust((je_r dom_ams of the se;n}e tr;]hasei merge
the one-dimensional case. However, the two-dimensiondl ¢ STaller domains die oLFig. 6(c)~6(€)]. A further slow

case is more complicated since localized objects expandingr'ft of tthe _pha;e ftrr? ntfs |stthen Stt'“ Oblffenf d, W'tthb? tetn-
into the cross section may emerge spontaneously in th ency to minimize Ine front curvature. =inally, a stable sta-

space-time diagram. Note that the temporal oscillationR of tlor'lAary_ d'St”thtt'cm IS reachfeEFhlg. 6(f)|]' ters i del i
in the space-time diagram are an artifact of the approximate h important property of phase clusters in our model is

transformation to amplitude and phase variables due tghase balanc_:e, i_.e., the total areas occupied by the different
strong deviations of the local dynamics from the chosen refp_hase _domalns in the asymptotic state are .equal..When a
erence orbit in phase space. simulation is started with a different initial size ratio, the

The observed properties of intermittent turbulence agreéiornain interfaqes ;onvly drift until a balanced cqnfiguration
well with the scenario seen in the CGLE with global feed-'S reac_hed. This drift is induced by the cha_nge m_the feed-
back. In this equation, remarkably similar cascades of amplipaCk signal that follows a change of t_he size ratio. In the
tude defects have been observed in one space dimensigHe of.phase .balance, the Iocal_oscnlatlons sum up to a
[15,43. In two dimensions, the defects corresponded togIObaI signal with a fr_equency twice as large as the fre-
bubble-shaped structurgg7]. Note that intermittent turbu- d4€NCY of local oscillations, see the curves below the space-
lence has also been observed in the unforced CGLE for agt € diagram of one-d|men3|qnal _ph_ase cluster_s displayed in
propriate parameter valugd1,44. However, it looks differ- ig. 7. Two-phase clusters with similar properties were also

ent and ring-shaped objects are usually not observed in th{gund In_our prévious |nvest|gat|op§19] of _fee.dback—
case in two space dimensions. induced pattern formation when uniform oscillations were

stable and turbulence was absent in the unperturbed system.
The space-time diagram in Fig. 7 reveals an interesting
difference from the previously observed phase clusters. Ex-
Inside the cluster regions in Fig. 2, two different types ofamining this diagram, one finds that the local oscillations
stable clusters, the so-called phase and amplitude clusteiigside the phase domains are characterized by an alternating
have been observed. Their common feature is the presence wfagnitude of subsequent oscillation maxirtsee also the
a small number of synchronized domains belonging to one ofurves below the space-time diagnamhis phenomenon of
two different oscillatory states. No intrinsic spatial wave- period-two oscillations significantly affects the properties of
length is present in such patterns. the narrow phase fronts separating the different domains.

D. Cluster patterns
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with coexisting limit cycleq“amplitude clusters’) were also
observed in the model of CO oxidation as an effect of global
delayed feedback on stable uniform oscillatiph8] and un-
der intrinsic gas-phase coupling6,37).

PATTERN FORMATION ON THE EDGE OF CHAOS ..
E. Wave patterns and cellular structures
In the following, patterns found in the hatched region in

' Fow A e N Fig. 2b) are described. All such structures are stable with

0.6/~ i
U 0.4 TAY YANNTA respect to small perturbations, but transform into intermittent
o or developed turbulence when a sufficiently strong local per-
02 turbation is applied.
Close to the upper boundary of this region, oscillatory
. ) ) standing wavewith an intrinsic wavelength are found in one
_FIG. 7. Space-time diagram of phase clusters in a onegpsce dimension, see Fig. 9 for an example. Such patterns
dimensional system. .Th.e variatileis d'SpIayed.' T.he curves in the  consist of periodic modulations of both the spatial distribu-
bottom show the variation of CO coveragewithin the different . S . .
. . o tions of the oscillation phase and the amplitude, see Fay. 9
cluster domaingdashed and dotted lineand the variation of the .
spatial average (solid line). The same parameters as in Fig. 6 A local increase oR corresponds o a decrease of The
P g ' P 9% modulations are stationary, so that all system elements show

While within the domains, consecutive local oscillation P€riodic oscillations, see the space-time diagram of the os-

maxima show a large difference, this difference continuoushfi!lation phase shown in Fig.(5). The phase and amplitude
decreases towards the center of a phase front. In the middlariations are small for feedback parameters close to the bor-

of the front, there is a point where the oscillations are ofd€l t0 uniform oscillations, and continuously grow as the

period-one type and almost coincide with the global oscillaf€€dPack intensity is decreased at a constant delay. At a

tions of the pattentblack line in Fig. 7. Thus, an oscillation 9iven set of feedback parameters, the wavelength of the

node is absent inside such stationary fronts. This result cofiodulations is a characteristic property of the pattern, i.e., it

trasts with the presence of oscillation nodes typical for stalS @lmostindependent of the system siaeveak dependence

tionary antiphase domains with period-one local oscillationdS Still observed due to the constrains set by the periodic
[19,45. boundary conditions Standing waves arising from a finite

Additionally, a different cluster type exists in the large Wavelength instability were previously observed in the
cluster region in Fig. @) (at 7/T,~0.15) at high feedback model of CQ oxidation un_der intrinsic gas phase coupling
intensities,u/p,>0.17. A space-time diagram of such clus- [36:37 and in the CGLE with global feedba¢#5].

ters, which are due to the coexistence of two limit cycles, is JPON & decrease of the feedback intensity, standing waves
shown in Fig. 8. Inside the small domain, oscillations areP€come unstable when the amplitude and phase modulations

simple periodic and have a large amplitude, while the other1ave reachgd a critical size. Neighporing phase_ _minima then
domains of the pattern show period-two oscillations withstart to oscillate weakly around their mean position, thereby

much smaller amplitude. The domain interfaces are stationl?'Ming @ pattern obreathing wavesA space-time diagram

ary and phase balance is absent in such a pattern. Clusté?lgo""ing the phase distribution of such a pattern in a rotating
coordinate frame is shown in Fig. . When w is further

decreased and the strength of the breathing reaches the order
of the spatial wavelength of the pattern, its regularity breaks
down. The resulting state is shown in Fig.(80 Colliding

local phase minima merge and from time to time new such
regions are created. However, the phase and amplitude
modulations remain comparatively weak, and the global os-
cillations are still nearly periodic. Such a behavior is remi-
niscent of phase turbulencd41] in the one-dimensional
CGLE. Defects are only spontaneously created in the system

t(s) 10 1

0.2 =

U o4 W
(GPAVAR (PR %

-

0 5

t (s)

10

v when the feedback intensity is further decreased below the

hatched region in Fig.(®), where they quickly reproduce to
form amplitude turbulence. The described transition from
standing waves to breathing waves and to phase turbulence is
in accordance with previous observations in the framework

FIG. 8. Space-time diagram of clusters with coexisting limit of the CGLE with global feedbacl43].

cycles in a one-dimensional system. The variables displayed.

In roughly the same region of feedback parameters where

The curves show the variations ofwithin the small and the large wave patterns and phase turbulence are found in one space

cluster domains(dashed and dotted lines, respectiyejnd the
variation ofu (solid line). The parameter values aréT,=0.088

and u/py=0.200.

dimension, oscillatory cellular structures develop in two-
dimensional systems. Like wave patterns, such structures
represent small-amplitude modulations of uniform oscilla-
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IV. DISCUSSION

2.0t ' ' '
(a) ; In this paper, we have shown that amplitude turbulence in
3 ; a realistic model of CO oxidation on @10 can be sup-
I R pressed by means of global delayed feedback. Such a feed-

1.0 U\_/\_/\_/U\./U\_/U back can be easily implemented in systems of various origins

r and its parameters can be freely varied. Synchronization dia-
0.5 /\/\/\/\/\/\/\/\/\ grams have been constructed for different initial conditions,
i ¢/,ﬂ_ showing the regions of existence for different spatiotemporal
, , , patterns. It was found that turbulence is suppressed and uni-
0 100 200 300 400 form oscillations are stabilized in wide regions of the_fegd-
X (pm) back parameters, in accordance with experimental findings
[26]. At the edge of chaos, when global delayed feedback is
(b) too weak to induce uniform oscillations but strong enough to
significantly affect pattern formation, a broad variety of com-
plex patterns was found.
In Fig. 13, we summarize the different observed two-
dimensional structures and their amplitude and phase prop-
— erties. The images in the top, second, and third rows of Fig.
13 display spatial distributions of CO coverage, phase, and

5 - ' ' amplitude, respectively. Additionally, the bottom row shows
L ARt L ] a phase portrait of each pattern.
Z4.80F The unperturbed turbulent stdteig. 13a)] is character-

8 0 5 t (s) 10 15 ized by strong amplitude and phase fluctuations. This state is
similar to fully developed amplitude turbulence in the un-
forced CGLE[41]. The patterns shown in Figs. d8—13e)
FIG. 9. Standing waves in a one-dimensional syst@nPhase  represent typical two-dimensional patterns induced by the
and amplitude profiles at a fixed timé) Space-time diagram of feedback.
the phase and the corresponding variation of the CO partial pres- |ntermittent turbulencgFig. 13b)] has been observed
sure. The parameter values ad,=0.110 andu/p=0.012. close to the synchronization border under increasing feed-
back intensity. This regime is characterized by irregular cas-
tions and are replaced by intermittent or amplitude turbucades of bubbles developing into ring-shaped structures on
lence upon a sufficiently large local perturbation. Three dif-the background of uniform oscillations. The amplitude is
ferent types of cellular structures are encountered. Close tfongly decreased inside such localized objects.
the border to uniform oscillations, the cell arrays are regular Stationary two-phase clustefBig. 13c)] were observed
and show a hexagonal symmetry, see FigallSuch pat- _under further increase of the feedback intensity in narrow
terns are the result of nonlinear interactions between tripletdtérvals of the delay time.. Because the local oscillations

of modes of wave vectdk with the same wave numbék| inside the cluster domains exhibit period-two local oscilla-

=ko [46]. The observed structures are stationary in spacet'pns’ oscillations within the different cluster domains at a
. - - given point in time differ not only in phase, but also in am-
but show time-periodic local oscillations.

Eitude; nonetheless, they correspond to the same limit cycle.

When the feedback intensity is decreased, stationary ce addition to phase clusters, amplitude clusters with coex-

arrays become unstable at a delay-dependent critical value tent limit cycles were also observed but are not shown in
w. Individual cells then periodically shrink and expand, Fig. 13.

thereby forming_an array of breathing cells, see Figb)_L]ln Hexagonal cell array§Fig. 13d)] arising from a finite
the spatial Fourier spectrum of such a pattern, two indepenyayelength instability were found in a range of feedback
dent frequencies are present. parameters where standing waves develop in one space di-

As in the one-dimensional system, phase turbulence demension. Secondary instabilities led to breathing cellular
velops upon further decrease of the feedback intensity. Atructures(not shown in Fig. 18 and to phase turbulence
snapshot of the resulting state, characterized by the mobilitiFig. 13e)]. As seen in the corresponding phase portraits,
of cells, is shown in Fig. 1k). Individual cells shrink and both the phase and the amplitude are modulated in cellular
expand aperiodically while they slowly travel through the structures, though the amplitude variations are weak.
medium. Occasionally, some of the cells die out or, follow- All principal types of feedback-induced two-dimensional
ing an expansion, reproduce through cell splitting, see Figpatterns—intermittent turbulence, clusters, and cellular
12 for such an event. Phase turbulence is replaced by amptructures—were also observed in experiments with CO oxi-
tude turbulence when the feedback intensity is further deeation on Pt110) under global delayed feedbal 26]. Dur-
creased. The formation of oscillatory cellular structures wasng intermittent turbulence, not only the formation of bubble-
also theoretically studied in the general model of the CGLEshaped objects on a uniformly oscillating background was
with global feedback27,46. experimentally observed, but also their predicted reproduc-
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FIG. 10. Space-time diagrams @) breathing waves an¢b) . . ','.. > Jﬁ*
phase turbulence in a one-dimensional system. The phase distribt . . ‘. _’. ‘f,cy
tion is displayed in a coordinate frame rotating with the period of - .

the reference orbit. The shown time intervals @ael100s andb)
200s. The parameter values dfT and u/pg are, respectivelya)
0.110, 0.010, andb) 0.110, 0.008.

FIG. 11. Different types of oscillatory cellular structures in two

. . " . space dimensionga) stationary cells(b) breathing cells(c) phase
tion cascades could be identified. Phase clusters in the e¥;pulence. Displayed are distributions of CO coverége row),

periments also exhibited stationary phase fronts, period-twghase(second row, amplitude(third row), and the spatial power
local oscillations, and phase balance. While disordered cekpectra of the amplitude distributiottisottom row. In the images
lular structures have been observed, regular arrays of cells u, ¢, andR, black color corresponds to the minimum and white
were not seen in the experimental system where finetuning ajolor to the maximum value of displayed variables. The parameter
the parameters is difficult and some structural surface defectalues of 7/T, and u/p, are, respectively(a) 0.110, 0.019;(b)

are always present. Additionally, the experiments exhibited &.110, 0.016; andc) 0.110, 0.012.

variant of standing waves characterized by the presence of

alternating dark and bright stripes. It is known that in order, s such as traveling phase flips, asynchronous oscilla-
to reproduce such patterns in simulations employing thgiong and several other types of cluster patterns was ob-
model of CO oxidation, a fourth variable describing the for-aineq. Except for clusters, none of the structures presented
mation of subsurface oxygen must be_'”c'“‘ﬂ@ﬂl- ._.._inthe present study were observed. Bubbles and ring-shaped
A transformation to phase and amplitude variables similalgy,cryres during intermittent turbulence, oscillatory cellular

to the one we have employed in the present work has alsgyctures, and phase turbulence are characteristic patterns

been applied to the experimental dg2]. Our simulations o4y 4 transition to chaos and thus we conclude that the pres-
successfully reproduce the principal amplitude and phase

properties of the corresponding structures seen in the experi-

ments. There, the turbulent objects seen during intermittent (a) (b) (c)
turbulence also represent extended amplitude defects. For
two-phase clusters, a similar “bridge” connecting the two
different phase states is seen in the phase portraits. Cellular
structures in the experiments are also characterized by rela-
tively strong phase variations while the amplitude variations
are comparatively weak.

The results of our simulations can be further compared to
the previous study19] of model (1)—(4) conducted at pa- FIG. 12. Splitting process of a cell. The cell that undergoes
rameter values for which the unforced system shows stablgyiitting is indicated by an arrow. Snapshots of the phase are dis-
uniform oscillations(or stable spiral waves in two space di- played; only one quarter of the system of size>0044 mnt is
mensiong instead of chemical turbulence. For this case, ashown. The time interval between individual frames\is=4.8 s.
different synchronization diagram featuring spatiotemporafThe parameters are as in Fig.(d1
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1 O T T T
0.8 .
w +
0.6 .
FIG. 13. (Color onling Distributions of CO coveragéop row), 0.4 . 1 . " . | A i \ | i
oscillation phasgsecond roy, amplitude(third row), and phase 0.2 0.4 0.6

portraits(bottom row for (a) unforced turbulence an@)—(e) sev-
eral typical feedback-induced two-dimensional patterns. In the im-
ages, yellow(white) color denotes high, and blublack) color de-
notes low values of the displayed variables. Green and(lrght FIG. 14. Definition of the amplituddR=p/p,s and phasep
and dark gray, respectivelyreas denote intermediate values. The :277:‘|—/Tref for nonharmonic oscillations.

phase portraits display amplitude and phase of each pixel of a pat-

tern in polar coordinates. In the phase portréijsand(c), bold dots . . . .
have been added to indicate the uniform states. The side length & diffusively coupled Hopf oscillators. Although this equa-

the system is 0.4 mm in framesg), (c)—(e) and 0.6 mm in frame tion is strictly valid only close to the soft onset of oscilla-

(b). The values of the feedback parameter&10~5 mbar) andr (s 1ions, the results can often be successfully used to interpret
are, respectivelyta) 0, 0; (b) 0.27, 0.8:(c) 0.40, 0.4:(d) 0.09, 0.3;  €xperimental or numerical data, even in cases when oscilla-

and(e) 0.06, 0.3. tions have large amplitude and are nonharmonic. To provide
a link to the general studies performed in the framework of
ence of turbulence in the unforced system is essential foine CGLE, it would thus be convenient to have amplitude
their observation. and phase variables also defined for anharmonic oscillations,
We finally note that in our numerical study, the modelin such a way that they can be compared to the amplitude
parameters have been chosen in such a way that oscillatiog§d the phase of harmonic oscillations in the normal form
were not harmonic and the system was not close to a supeifeory.
critical Hopf bifurcation. Nonetheless, the observed patterns, The variable transformation suggested in Réf] was
to a large extent, resemble the structures exhibited by théeveloped to realize this idea. It is an empirical method to
general model of the complex Ginzburg-Landau equatioriransform a pair of model variables into an amplitude and a
with global feedbacK15,27] where intermittent turbulence, Phase variable after computational modeling. Here, ampli-
amplitude clusters, and oscillatory cellular arrays were alsgude and phase are defined in the projection plane of the two
found. Thus, we expect that many of the observed phenonihodel variabless andw. A reference trajectory for the dy-

ena can be also found in other reaction-diffusion systems dfamics defined in this plane is introduced to approximately
various origins. compensate for deviations from harmonicity in the oscilla-

tions.
The transformation is illustrated in Fig. 14. Suppose that
ACKNOWLEDGMENT the reference trajectory is the closed orbit. The reference

W full K ledae fi ial fthe D orbit can, for instance, be chosen as the long-time average of
e gratefully acknowledge financial support of the Deut-y, projected local trajectories, or, as it was done here, be

sche ForschungsgemeiTschaft in the framework of SO?deaetermined by an additional numerical simulation of model
forschungsbereich 555 “Complex Nonlinear Processes. (1)—(3) in the absence of diffusiond=0), where the con-

trol signal previously generated by the diffusive system was
applied a9 o forcing. Note that for periodic uniform oscil-
lations, the reference trajectory exactly corresponds to the
projection of the limit cycle.

Theoretical studies of pattern formation in oscillatory = An amplitudeR and a phase for any local system state
reaction-diffusion systems are often performed in the frameP with coordinates ,w) in the projection plane can now be
work of the CGLE, which is the amplitude equation of a field defined in the following way. First, the radius vector of

U

APPENDIX: TRANSFORMATION TO PHASE
AND AMPLITUDE VARIABLES
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length p=OP and the pointQ where this radiugor its ex- Note that according to this definition, the amplitudeRis
tension intersects with the reference orbit are determined.=1 @S 1ong as the system stays on the reference orbit. More-
The amplitude for the poir® is then defined aR= p/p e over, for the motion corresponding to the reference orbit, the
i g rets . . . .

where the lengthy = OQ is used as a reference radius. Forphase¢> Increases at a constant velocity W'th time and
definition of the phase, some “initial” poir@, is marked on  changes by 2 after each period. When local oscillations are

] 2 0 nearly harmonic and the reference orbit is a circle with point
the orbit and the timd needed to reach poi@ along the g ip ts center, the above definition yields the usual phase

reference cycle is determined. The phase is then defined @pd amplitude variables. For further details on the transfor-
¢=27TIT,, WhereT,is the period of the reference orbit. mation to amplitude and phase variables refer to Ri].
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